|
Probability has a dual aspect: on the one hand the probability or likelihood of hypotheses given the evidence for them, and on the other hand the behavior of stochastic processes such as the throwing of dice or coins. The study of the former is historically older in, for example, the law of evidence, while the mathematical treatment of dice began with the work of Cardano, Pascal and Fermat between the 16th and 17th century. Probability is distinguished from statistics. (See history of statistics). While statistics deals with data and inferences from it, (stochastic) probability deals with the stochastic (random) processes which lie behind data or outcomes. ==Etymology== ''Probable'' and ''probability'' and their cognates in other modern languages derive from medieval learned Latin ''probabilis'' and, deriving from Cicero and generally applied to an opinion to mean ''plausible'' or ''generally approved''.〔J. Franklin, ''The Science of Conjecture: Evidence and Probability Before Pascal'', 113, 126.〕 The mathematical sense of the term is from 1718. In the 18th century, the term ''chance'' was also used in the mathematical sense of "probability" (and probability theory was called ''Doctrine of Chances''). This word is ultimately from Latin ''cadentia'', i.e. "a fall, case". The English adjective ''likely'' is of Germanic origin, most likely from Old Norse ''likligr'' (Old English had ''geliclic'' with the same sense), originally meaning "having the appearance of being strong or able" "having the similar appearance or qualities, with a meaning of "probably" recorded from the late 14th century. Similarly, the derived noun ''likelihood'' had a meaning of "similarity, resemblance" but took on a meaning of "probability" from the mid 15th century. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「history of probability」の詳細全文を読む スポンサード リンク
|